
Interoperability with C
 in Fortran 2003
Megan Damon - SIVO/NGIT

SIVO Fortran Series
February 12th 2008

2/12/2008 Interoperability with C 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.
 Webex - under investigation

2/12/2008 Interoperability with C 3

Outline
 Introduction
 ISO_C_BINDING intrinsic module
 Intrinsic types
 Interoperable procedures
 Interoperable data
 Best Practices & Limitations
 Resources

2/12/2008 Interoperability with C 4

Introduction

 Fortran 2003 provides a standard (and ultimately portable)
means for interoperating with C
 Provides access to libraries and procedures developed in C
 Conversely, provides access to Fortran libraries and procedures

from C
 Interoperability enforced by requirements on Fortran syntax;

compiler knows at compile time
 Fortran compiler may support multiple C compilers
 Selection of C compiler is vendor dependent

 Use of these features requires some familiarity with both C and
Fortran

2/12/2008 Interoperability with C 5

Supported Features

200708100.9010.05.110.0Interoperability with C
g95 gfortranxlfNAGifortFeatures

Feel free to contribute if you have
access to other compilers not
mentioned!

2/12/2008 Interoperability with C 6

ISO_C_BINDING
 A vendor provided intrinsic module

 Provides named constants for declaring Fortran
data which interoperates with C data

 Small number of procedures for managing pointers
and addresses

 Vendors may provide a means to select
different ISO_C_BINDING modules among
varying C compilers

Best practice: To avoid naming conflicts it is
recommended that the ONLY options is used in
the USE statement.

2/12/2008 Interoperability with C 7

Intrinsic Data Types
Interoperable entities

 For each C data type provided by the vendor
there is an equivalent named constant in
ISO_C_BINDING
 Value of the named constant specifies the KIND for

the corresponding Fortran data type
 Support for: INTEGER, REAL, COMPLEX,

LOGICAL, and CHARACTER types
 Example of Fortran declaration interoperable

with C double:
real(KIND=C_DOUBLE) :: temperature

2/12/2008 Interoperability with C 8

Caveats
 Vendor is not required to support all cases

 Should not be an issue on IEEE hardware (?)
 Integer kinds:

 -1 indicates no corresponding Fortran kind
 -2 indicates no corresponding C data type

 Floating point kinds:
 -1 indicates no exact correspondence in precision
 -2 indicates no exact correspondence in range
 -3 neither
 -4 any other reason

 Same idea for invalid values of boolean and characters kinds
 Fortran does not provide support for unsigned kinds of integers

2/12/2008 Interoperability with C 9

Intrinsic Types

intC_INTINTEGER

charC_CHARCHARACTER

_BoolC_BOOLLOGICAL

float _ComplexC_FLOAT_COMPLEXCOMPLEX

doubleC_DOUBLEREAL

floatC_FLOATREAL

int64_tC_INT64INTEGER

int32_tC_INT32INTEGER

short intC_LONGINTEGER

C typeNamed constant from
ISO_C_BINDING

Fortran type

2/12/2008 Interoperability with C 10

Intrinsic Types -
C characters with special semantics

‘\v’ACHAR(11)vertical tabC_VERTICAL_TAB

‘\t’ACHAR(9)horizontal tabC_HORIZONTAL_TAB

‘\r’ACHAR(13)carriage returnC_CARRIAGE_RETURN

‘\n’ACHAR(10)new lineC_NEW_LINE

‘\f’ACHAR(12)form feedC_FORM_FEED

‘\b’ACHAR(8)backspaceC_BACKSPACE
‘\a’ACHAR(7)alertC_ALERT

‘\0’CHAR(0)null characterC_NULL_CHAR

Value
(C_CHAR≠ -1)

Value
(C_CHAR= -1)

C definitionName

2/12/2008 Interoperability with C 11

Intrinsic Procedures
 C_LOC (var)

 Returns C address (type C_PTR) of var
 Some restrictions may apply

 C_FUNLOC (proc)
 Returns C address (type C_FUNPTR) of procedure

 C_ASSOCIATED (cPtr1 [, cPtr2])
 Inquiry function for object and function pointers
 Returns false if cPtr1 is a null C pointer or if cPtr2 is present with a different

value
 C_F_POINTER (cPtr1, fPtr1 [, shape])

 Associates Fortran pointer, fPtr1, with address cPtr1 (type C_PTR)
 Shape is required when fPtr1 is an array pointer

 C_F_PROCPOINTER (cPtr1, fPtr1)
 Associates Fortran procedure pointer, fPtr1 with the address of

interoperable C procedure cPtr1 (type C_FUNPTR)

2/12/2008 Interoperability with C 12

Interoperable Procedures
 A Fortran procedure is interoperable if

 it has an explicit interface
 it has been declared with the BIND attribute
 the number of dummy arguments is equal to the number of formal

parameters in the prototype and are in the same relative positions as the
C parameter list

 and all the dummy arguments are interoperable
 Return values

 An interoperable Fortran function must have a result that is scalar and
interoperable

 For a subroutine, the C prototype must have a void result
 Caveats

 Interoperable functions cannot return array values
 Fortran procedures cannot interoperate with C functions that take a

variable number of arguments (the C language specification allows this)

2/12/2008 Interoperability with C 13

Example of Interoperable
Fortran Procedure Interface

INTERFACE
 FUNCTION func (i, j, k, l, m), BIND (C)
 USE, INTRINSIC :: ISO_C_BINDING
 INTEGER (C_SHORT) :: func
 INTEGER (C_INT), VALUE :: i
 REAL (C_DOUBLE) :: j
 INTEGER (C_INT) :: k, l(10)
 TYPE (C_PTR), VALUE :: m
 END FUNCTION func
…
short func (int i, double *j, int *k, int l[10], void *m)

2/12/2008 Interoperability with C 14

Binding Labels for Procedures
 A binding label is a value that specifies the name by

which a procedure with the BIND attribute is known
 Has global scope
 By default, it is the lower-case version of the Fortran

name
 Examples of binding labels for Fortran procedures

 Function with assumed binding label of func
FUNCTION FUNC (i, j, k, l, m), BIND (C)

 Function with explicit binding label of C_Func
 FUNCTION FUNC (i, j, k, l, m), BIND (C, ‘C_Func’)

2/12/2008 Interoperability with C 15

Interoperable Data
 Fortran data is interoperable if an equivalent

data declaration can be made in C and the
data is said to be interoperable
 Scalar and array variables are interoperable
 Dynamic arrays can be passed between the two

languages
 The BIND attribute is required for a Fortran derived

type to be interoperable
 C variables with external linkage can interoperate

with Fortran common blocks or module variables
that have the BIND attribute

2/12/2008 Interoperability with C 16

Interoperability of Variables
 Fortran scalars are interoperable if

 the type and type parameters are interoperable with a scalar C variable and
 they are not declared as pointers nor have the allocatable attribute

 Fortran arrays
 are interoperable if

 the type and type parameters are interoperable
 and are of explicit shape or assumed size

 e.g. real :: A(3,4)
 e.g. real :: A(3,*)
 Not allowed real :: A(:,:)

 interoperate with C arrays of the same type, type parameters and shape,
but with reversed subscripts

 Example of an interoperable Fortran and C array
INTEGER :: A(18, 3:7, *)
…
int b[] [5] [18]

2/12/2008 Interoperability with C 17

Derived types
 Interoperable Fortran derived types must

 specify the BIND (C) attribute
 have the same number of components as the C struct type
 have components with type and type parameters that are

interoperable with the types of the corresponding components of the
C struct type

 Components of the Fortran derived type
 Correspond to the C struct type components declared in the same

relative position
 Corresponding components do not need to have the same name

 Caveats
 C struct types with bit fields or flexible array members are not

interoperable with Fortran types
 Fortran types are not interoperable with a C union type

2/12/2008 Interoperability with C 18

Derived Type Source Example
TYPE, BIND (C) :: fType
 INTEGER (C_INT) :: i, j
 REAL (C_FLOAT) :: s
END TYPE fType

 …
typedef struct {
 int m, n;
 float r;
} cType

2/12/2008 Interoperability with C 19

Global Data
 A C variable with external linkage can interoperate

with a Fortran common block or variable that has the
BIND attribute

 C variable with external linkage interoperates with a
common block specified in a BIND statement in one of
two ways:
 The C variable is a struct type and the elements are

interoperable with the members of the common block
 Or the common block contains only one interoperable

variable
 Only one variable can be associated with a C variable

with external linkage

2/12/2008 Interoperability with C 20

Global Data Example
use ISO_C_BINDING

COMMON /COM/ r, s
REAL(C_FLOAT) :: r, s
BIND(C) :: /COM/

struct {float r, s;} com; /* external */

void setter() {
 com.r = 3;
 com.s = 4;
}

2/12/2008 Interoperability with C 21

Array Variables
 A Fortran array of rank one is not interoperable with a

multidimensional C array
 Polymorphic, allocatable, and pointer arrays are never

interoperable
 A Fortran array of type character with a kind type of

C_CHAR is interoperable with a C string (C null
character as last element of the array)
 ISO_C_BINDING provides the constant C_NULL_CHAR

2/12/2008 Interoperability with C 22

Dynamic arrays
 C pointers are the mechanism for passing dynamic

arrays between the two languages
 an allocated allocatable Fortran array can be passed to C
 an array allocated in C can be passed to a Fortran pointer
 a Fortran pointer target or assumed-shape array (no bounds

specified) cannot be passed to C
 ISO_C_BINDING provides

 C_PTR is the derived type for interoperating with any C object
pointer type

 C_NULL_PTR is the named constant of type C_PTR with the
value NULL in C

2/12/2008 Interoperability with C 23

Examples of Interoperable
Dynamic Arrays

int main () {
…
pass *arrays=(pass*)malloc(sizeof(pass));
(*arrays).lenc = 2;
arrays->c =malloc((*arrays).lenc*sizeof(float));
a[0] = 10.0;
a[1] = 20.0;

for(i=0;i<(*arrays).lenc;i++) {
 *(arrays->c+i)=a[i];
}

/* Calling Fortran routine "simulation" */
 simulation(arrays);

typedef struct {
 int lenc, lenf;
 float *c, *f;
} pass;

1. C initializes the
arrays to be
passed to Fortran

SUBROUTINE simulation(arrays) bind(c)

…

TYPE (pass), INTENT(INOUT) :: arrays

REAL (C_FLOAT), POINTER : cArray (:)

CALL C_F_POINTER(arrays%c,cArray, (/arrays%lenc/))

print*, cArray

TYPE, BIND(c) :: pass
 integer (C_INT) :: lenc, lenf
 TYPE (C_PTR) :: c, f
 END TYPE pass

2. Fortran
associates cArray
with array initialized
in C program and
prints the values

2/12/2008 Interoperability with C 24

Examples of Interoperable
Dynamic Arrays

SUBROUTINE simulation(arrays) bind(c)

…

TYPE(pass),INTENT(INOUT) :: arrays
REAL(c_float),ALLOCATABLE,TARGET,SAVE :: eta(:)

arrays%lenf = 3
ALLOCATE (eta(arrays%lenf))
do i = 1,arrays%lenf
 eta(i) = 10.*i
enddo
arrays%f = C_LOC(eta)

TYPE, BIND(C) :: pass
 INTEGER (C_INT) :: lenc, lenf
 TYPE (C_PTR) :: c, f
 END TYPE pass

2. Fortran
allocates an array
and makes it
available in C

int main () {
…
pass *arrays=(pass *)malloc(sizeof(pass));

/* Calling Fortran routine "simulation" */
 simulation(arrays);

for(i=0;i<(*arrays).lenf;i++) {
 printf("%f\n",*(arrays->f+i));
}

…
3. C prints the
modified values
of arrays->f

typedef struct {
 int lenc, lenf;
 float *c, *f;
} pass;

1. C program
allocates arrays of
type pass

2/12/2008 Interoperability with C 25

Best Practices & Limitations
 Best practices:

 Use explicit “ONLY” clause for use of ISO_C_BINDING
 Use “name=” specifier for external names
 Use all caps for named constants
 Use ISO_C_BINDING for portability in-and-of-itself?

 Limitations
 Vendor need not support all available C compilers
 This is C not C++
 Limited support for advanced Fortran features

 No optional arguments
 No array return values
 No assumed-shape arrays (arr(:,:)) nor pointer targets
 Etc.

2/12/2008 Interoperability with C 26

Resources
 This talk:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1376
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Real world examples
 Fortran 2003 Interface to OpenGL:

http://www-stone.ch.cam.ac.uk/pub/f03gl/
 Fotran 2003 version of NETCDF:

ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/netcdf-3.6.1-f03-2.tgz
 FGSL: A Fortran interface to the GNU Scientific Library

http://www.lrz-muenchen.de/services/software/mathematik/gsl/fortran/index.html

2/12/2008 Interoperability with C 27

Next Fortran 2003 Session
 Extensions to Allocatables and Pointers
 Tom Clune will present
 Tuesday, February 26 2008
 B28-E210

